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ABSTRACT .~ Procedures are developed for constructing asymptotic solutions
for certain ronlinear singularly-perturbed vector two-point boundary value
problems having boundary layers at one or both end points. The asymptotic
approximations are generated numerically and can either be used as 1s or to
furnish a two-point boundary value code (e.g. COLSYS) with an i{nitial approx-
imation and a nonuniform computational m2sh. The procedures are applied to
several examples involving the deformation of ronlinear elastic beams.r,‘ 4

1. INTRODUCTION. We consider singularly-perturbed two-point houndabx
value problems for nonlinear vector systemns of the form

x = £(x,y,t,e) , ev = g(x,y,t,e) , 0< t <1 (1la,b)
a(x(0),y(0),e) = 0 , b(x(1),y(1),e) =0 (lc,d)

where x, y, a, and b are vectors of dimension m, n, q, and r = m + n - q,
respectively. We seek to find limiting solutions of problem (1) as the small
positive parameter € tends to zero; however, to do this in complete generality
is very difficult and beyond the grasp of our current understanding. Thus, we

*This research was partially sponsored by the U,S. Air Force Office of
Scientific R2search, Air Force Systems Command, USAF, under Grant Number
AFOSR 80-0192 and by the Office of ‘iaval Research under Contract Number
N00014-81K-056. The United Stater Sovernment is authorized to reproduce ard
distribute reprints for government purposes notwithstanding any copyright
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simplify problem (1) considerably by assuming, in addition to natural
smoothness hypothesis, that (1) g, a, and b are linear functions of the fast

variable y, i.e.

g(x)Y)tle) = gl(x,t,r_) + CZ(xot;c)y (2a)
a(x(0),y(0),€) = aj(x(0),€e) + A(x(0),¢€)y(0) (2v)
b(x(1),y(1),€) = by(x(1),e) + Ba(x(1),€e)y(1) (2¢)

(11) that Gy(x,t,c) has a hyperbolic splitting with k > 0 stable eigenvalues
and n - k > O unstable eigenvalues for all x and 0 < t € 1, and (i1i) that q ?

kand r > n - k.

With the assumed hyperbolic splitting, we would expect y to vary rapidly
relative to (the slow vector) x in narrow boundary layer reglons near both t =
0 and 1. We thus seek limiting solutiors having the form :

x(t,e) = X(v) + 0(e) , yl(t,e) = ¥(t) + u(1) + v(o) + 0(e) (3a,b)

where the initial layer correction u(t) and the terminal layer correction
v(o), respectively, decay tc zero as the stretched viariable

T=t/e or o= (1-t)/. - (4a,b)

tend to infinityv. The limiting solution X(t), Y(t) within 0 < t < 1 must
necessarily satisfy the reduced system

X = £(X,Y,t,0) , O = g(X,Y,t,0) (5a,b)

Because G 1is everywhere nonsingular, we can use Eqs, (2a) and (5b) to
determine

Y(t) = -G~ H(X,t,0)g1(X,t,0) (6)

in a locally unique way, and there remains the mth order nonlinear differen-
tial system (Eq. (5a)) for determiring X(t).

In order to completely specify the reduced solution we must prescribe m
boundary conditions for equations (5a). We do this by providing a
"cancellation law” which selects a combination of 'q~k inftial conditions (Eq.
(2b)) and of r — n + k terminal conditions (%g. (2¢c)) to be satisfied by X and
Y. 1In Section 2 we present a numerical pruocedure for determining the boundary
conditions for the reduced system that uses an orthogonal matrix E(x,t) to
reduce the matrix Gp(X(t),t,0) to a block tridiagonal form so that the stable
and unstable eigenspaces may be separated. The boundary layer corrections
u(t) and v(o) in Eqs. (3) compensate for the cancelled initial and terminal
conditions, respectively, and they can be determined once X(t) has been
computed (cf. Section 2). This process avoids complicated matghiq&r_

procedures. | e e
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In Section 3 we discuss a numerical procedure for determining the
asymptotic approximation (Eq. (3)) which uses the general purpose two-point
boundary value code COLSYS to solve the reduced problem and then adds numeri-
cal approximations to the boundary layer corrections. This approximation is
considerably less expensive to obtain tharn solving the full stiff problem
numerically and it has the advantage of improving in accuracy, without any
additional computational cost, as the small parameter € tends to zero. How-
ever, when € is only moderately small our asymptotic approximation may not be
sufficlently accurate for sume purposes, so we have developed a procedure (cf.
Section 3) that generates an improved solution by using COLSYS to solve the
complete problem (Eqs. (1) and (2)) with our asymptotic approximation as an
initial guess. 1In order for this approach Lo succeed we must also provide
COLSYS with an initial nornuniforam m2sh that is appropriately graded in the
boundary layers (cf. Ascher and Walss (Pef, 2)) and we uive an alsorithm for
constructing such a mesh in Section 3, While our procedure does not appear to
be optimal, we show by an example irvolving the deformation c¢f a nunlirear
elastic beam (cf. Section 4) that it does offer some advantayge over the wore _
standard approach of continuation in €, where ore starts with a larve value of f
€ (e.g. € = 1) and a crude initial guess and reduces £ in steps so that the :
mesh is gradually concentrated into boundary layer reglons,

We close Section 4 with a second rornlinear beam example that is heyond
the capabilities of our present methods because the maLrix Gy is a function of
y. Flaherty and 0'Malley (Ref. 6) analvzed this problem and showved that {iLs
solution becomes unbounded as € + 0, We include the numarical solution of
this problem in this paper in order to show one of the manv challenging
effects that can occur with singularly-perturbed problens.

Firally, in Section 5 we discuss cur results and present some suggestions
for future investigations.

2. ASYMPTOTIC APPROXIMATION. 1In order to calculate the bouniary 1
conditions for the reduced problem (Eqs. (5a2) and (5)) and the boundary layer
corrections (1) and v(o) we calculate the Schur decomposition of Lhe matrix

Gp at t = 0 and t = 1. 1In particular, at t = 0 we find an orthogonal matrix
E(x(0)) such that

T-(x(0)) u(x(0))
G2(x(0),0,0)E(x(0)) = E(x(0)) (7
0 T+(x(0))

where T- is k x k and upper triangular with the stable eigenvalues of Gy, and
T+ 1s upper triangular with the n-k unstable cigenvalues of Gy, The
decomposition (Eq. (7)) can often be obtaired aralytically; however, when this
is not possible or practical it can be determired numerically by using the QR
algorithm (cf. Golub and Wilkinsorn (Ref. 7) and Ruhe (Ref. 9) for specific
procedures).




g? We partition E after its kth columrn as

E = [E- E_] (8)

and note that E. spans the stable eigenspace of Gy at t = 0 and
P=E ET (9
is a projection onto this elgenspace,

Near t = 0, we assume that the terminal layer correction v is negligible,
substitute the asymptotic approximation (Eq. (3)) into the differential
equations (Egqs. (la,b)), use the reduced system (Eq. (5)), and retain only the
leading order terms to find that u{t) satisfies the conditionally stable
system

PR TR

! duldt = Gy(0) | (10)

b o

where (here and below) we use the argument t to denote conditions evaluated at
x(t) = X(t), t, and € = 0, e.g.,

L

€2(0) := G2(x(0),0,0) - (11)

Integrating Eq. (10) -

Ga(Q) T
u(t) = e u(0) (12)

o

i We require that u(t) decays as T increases and this will be the case provided
that p(0) 1s in the stable eigenspace of G2(0); thus, using Eq. (9) we require

u(0) = P(0)u(0) = E_(0)E-T(0)1(0) (13)

Using Eqs. (3), (13), and (2b) in Eq. (1b) we find that the limiting
initial conditions have the form

a1(0) + A2(0) [Y(0) + E-(0)E-T(0)u(0)} = 0 (14)

o We assume that A3(0)E_(0) has its maximal rank k and construct a q x q matrix

1 LT = (LT L.T) (15a)
1 that reduces it to row echelon form, {.e.,

:3 L v_

: - A2(0)E-(0) = (15b)
A L. 0

- - - -l

where V- is k x k and nonsingular, Multiplying Eq. (14) by L and using Egs.
(13) and (15) gives the initiesl laver jump and the q~k initial conditions for
the reduced problem, respectively, as




p(0) = =E_(0)V-"1L_[aj(X(0),0) + A2(X(0),0)Y(0)] (16a)

and -
2(X(0)) := L.[aj(X(0),0) + A(X(0),0)Y(0)) =0 . (16b)

We find the terminal layer jump and the r - (n-k) terminal conditiors for
the reduced problem in an analogous fashiorn with the exception that we define
E(x(1)) such that _ _

| - -

T+#(x(1)) | U(x(1))

Go(x(1),1,0)E(x(1)) = E(x(1)) n
0 T-(x(1))
which we partition after its (n-k)th column .
E = (Et E+] (18)

-~ ~

In parallel with Eqs. (7) and (8), the matrices T-, T4, and E4 contain the k
stable elgenvalues, the n-k unstable eigenvalues, and span the unstable eigen-
space, respectively, of Gy at t = 1, Our reasons for switching the positions
of the matrices containing the stable arnd unstable elgenvalues of Gy is that
there is no simple and stable computational procedure for finding a set of
vectors that span a given subspace and are not in the leading columns of an
orthogonal matrix like E (cf. Golub and Wilkinson (Ref. 7)).

Now, following the procedure that we used for the initial layer, we find
that the terminal layer correction satisfies

Ga(1)o
v(g) = @ v( () (19)

In order for v(o) to decay as o increases we require v (o) to be in the
unstable eligenspace of Go(1); thus, we take

v(0) = Q(1)v(0) = E4+(1)E+T(1) vw(0) 20)

where Q is a projection onto the (n-k) dimensional unstable eigenspace of
Ga(1).

We assume that Bp(1)E4(1l) has its maximal rark n-k and find a r x r
matrix

RT = [R,T 1, T) (21a)

that reduces it to the row echelon form

Re | Bo(1)E4(1) = | Vi (21b)

Ry 0

. cm———— -
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where V4 is (n-k) x (n-k) and nonsingular. Multiplying Eq. (1d) by R, using
Eqs. (2¢), (3), (20), and (21), and retaining only the leading order terms we
find the terminal layer jump and the r -(n-k) terminal conditions for the
reduced problem, respectively, as

v(0) = =E4(1)V4 ReIb1(X(1),0) + Ba(X(1),00¥(1)]) (22a)

and
Y(X(1)) := i+[p1(x(1),0) + B2(X(1),00¥(1)] = 0 (22b)

In the interest of brevity, we hiave omitted several details of our
construction and have not attempted to justifv the asymptotic validity of our
procedure. These toplcs will be the subject of a forthcoming paper by
0'Malley and Flaherty (Ref. 8).

3. NUMERICAL PROCEDURE., Our computational procedure consists of first
solving the reduced problem (cf. Egs. (5a), (6), (16b), and (22b)) numerically
and then adding any boundary layer corrections. Since the reduced problem is
not stiff we can use any good code for two-point boundary value problems (cf.
Childs et al, (Ref., 3)) and we have chosen to use the collocation code COLSYS
of Ascher, Christiansen, and Russell (Ref. 1). - )

Since the reduced problem is generally nonlinear and@ since COLSYS solves
nonlinear problems using a damped Newton method we have to supply formulas for
evaluating the Jacobilans of f, Y, ¢, and Y with respect to X. We do this by
providing analytical formulas for these Jacobians thal neglect the influence
of the derivatives of E, L, R, and G). This procedure has not failed on any
of our examples; however, an alternate possibility would be to approximate the
Jacobians by finite differences.

We start the Newton iteration with a uniform mesh and the default initial
guess x(0) (v) for X(t) that is provided by COLSYS and calculate successive
approximations X(P)(t) until convergence is attained. At each iteration step
we calculate an approximation E(P)(t) to E(t) for t = 0 and 1 as the Schur
decomposition of GZ(X(P)(L),t,O). In the examples of Section 4 we used
analytical formulas for E rather than the numerical procedures of Golub and
Wilkinson (Ref. 7) or Ruhe (Ref. 9). Finally L(P) and R(P) are obtained
using Gaussian elimination to row reduce Az(x(P)(O),O)E-(p)(O) and
Bo(X P)(l),0)8+(P)(l), respectively,

When the above procedure converges ve calculate boundary layer
corrections p(t) and v(o), for a given value of ¢, using Eqs. (12), (l6a),
(19), and (22a), and add these to the reduced solution in order to get the
0(e) asymptotic approximation (Eq. (3)). For moderately small values of €
this approximation may not provide a sufficlertly accurate representation of
the solution and, in this case, we use it as ar initial guess to COLSYS and
solve the complete problem (Eq. (1)). Unfortunately, this procedure will fail
unless we also provide COLSYS with an initial ronuniform partition

o= {0 = Lo < tl < e s e < LN = 1} (23)
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that is appropriately graded within the boundary layers. We seek to find n so
that the pointwise error satisfies

[leCed || < 61 + ||uCed|]) , 1 =1,2,...,8-1 (24)

where § 1s a prescribed tolerance, ul := [xT,yT], e is the difference betwken
u and its collocation approximation, and

[HuCep ]] := max |ugCey)] (25)
1<3 <mmén

We have based our condition for determining = on a pointwise error criteria
since this seemed to work better in practice than a global criteria. This is
somewhat surprising since COLSYS uses a global error criteria to select a
mesh,

We assume that the final partition selected by COLSYS to solve the
reduced problem satisfiles equatioe (24) outside of boundary layer regions and ‘
we seek to refine it within the boundary layers. We further assume that
derivatives of u can adequately be replaced by either u(1) or v(o) in the left
or right boundary layer, respectively.

e G g e

This problem was studied by Ascher and Weiss (Ref. 2) who showed that*
Eq. (24) could be approximately satisfied in the left boundary laver by
choosing subinterval lengths as
e 8Q|fultg-p ||y 1/2K

Lty = ti{-] = (=) [-—77—=—=-mo7——- (26)
; L T T N WD !

Y ——————

for collocation at the image of k Gauss-Legendre points per subinterval. Here
¢ is a numerical constant and o. is the magnitude of the largest diagonal
element of T-(X(0)). A similar formula can be obtained for selecting
subinterval lengths irn the right boundary layer.

PO ————

Starting with 1 = 1 we use Eq. (26) to generate a partition until we
either reach t = 1/2 or a point where a subinterval length selected by Eq.
(26) is larger than that used by COLSYS to solve the reduced problem. We then
repeat the procedure in the right boundary layer.

¢ We have written a computer code called SPCOL that implements the
-} algorithns that are described in this section; thus, 1t (1) uses COLSYS to
3

13
-
“
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solve the reduced problem, (i{i) calculates and adds appropriate boundary layer
corrections to the reduced problem, and (111) (optionally) suggests a mesh
that can b: used by COLSYS to solve the complete problem,

4, EXAMPLES. In order to appraise the performance of SPCOL we have
applied it to several examples involving the deformation of a nonlinear
elastic beam which is resting on a nonlinear elastic foundation and is
subjected to the combined action of a horizontal end thrust P and a lateral
load p(x,t) per unit length (cf, Figure 1). This problem 1s discussed and
analyzed in detail in Flaherty and O'Malley (Ref. 6) and herein we only
present the governing equations, which in dimensionless fornm are

st D R Sy




il = CO8 X , ;2 = sin x3 , ;3 =y (27a,b,¢)
e§1 - -y2 , c;z = (A%x2-p) cos x3 - Ty] , (27d,e)

where v
T = sec x3 + €y7 tan x3 (27€F)

The slow variables (x},x2) and x3 represent the Cartesian coordinates and the
tangent angle of a material particle on the centerline of the beam that was at
the Cartesian location (t,0) in the undeformed siate. The fast variables yj
and y; are the internal bending moment and transverse shear force,
respectively (cf. Figure 1). Finally, the small parameter is

TR L I R

WL

€2 = EI/PL? , : (28)

where EI is the flexural rigidity and L is the length of the beam; thus, our
beam is much stronger in extension than it is in bending.

This example does not precisely fit out hypotheses since the axial force
T is a function of the fast variable y; arnd, thus, Gy also depends on y.
However, our theory and methods will still apply as long as y remains bounded
and ‘X3‘ { n/2 as € + 0. In order to illustrate the diverse behaviors that
can occur when y either does or does not remain bounded as € + 0 we present
solutions for two problems both having A = p = 1 and which differ only in
their boundary conditions. Some additional examples are presented in Flaherty
and 0O'Malley (Refs. 6 and 8).

ST ER R TRAEEE S A TEROR e  RTT

In our first example we take the boundary conditions as

x3(0) = 0 , ~10x2(0) + y2(0) = 0 , =-x3(0) + 10y1(0) =0
(29)
10x2(1) + yo(1) = 0 , 10x3(1) + y1(1) =0

These supports correspond the a beam that 1is almost simply supported at t = O
and almost clamped at t = 1. However, perhaps due to friction, there is some
coupling between lateral and rotational effects at the supports.

As we shall see, y remains bounded in this example so our methods are
applicable. The orthogonal matrix )

1
E(x(0)) = (1+a2)~1/2 (30a)

where

2

a‘ = gsec x3(0) (30b)
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reduces

0 -1
G2(x(0),0,0) =
-a? 0

to the Schur form given by equation (7) at t = 0 and ET will reduce
Ga(x(1),1,0) to the form given by Fq. (17) at v = 1.,

We solved this problem in two ways: (1) using COLSYS to solve the
complete problem (Eqs. (27) and (29)) with continuation from a large to a
small value of € and (ii) using our code SPCOL to compute an iritial
-asymptotic approximation and to recommend a nonuniform mesh and using this
with COLSYS to calculate an improved solution. All calculations were
performed in double precision orn an IBM 3033 comput:r, used two collocation
points per subinterval, and set the error tolerance 5 (cf. Eq. (24)) at 10~%
for slow variables and 103 for fast variables.

Our results for the normalized CP times and the number of subintervals
(NSUB) that are either used by COLSYS or recommended by SPCOL are shown in
Tables 1 and 2 for continuation in € and our methods, respectively. Differ-
ences between our initial asymptotic approximatiorn and tke final solution:
obtained by COLSYS are shown for x3 and yy at t = 0 and 1 {in Table 3. We see
that the differences decrease like 0{e) as expected. Differerc.es that are
recorded as zero are less than 1075, Firally, we exhibit solutions for x3,
x3, y1, and y2 in Figure 2.

The results reported in Tables 1 and 2 need some additional explanation.
The number of subintervals and CP times used with continuation depended heav-
11y on the € sequence that was used. The results in Table ! are about the
best irsofar as they gave the smallest total CP time for the sequence. 1In
addition, COLSYS relies on the difference hetween solutions that are computed
on two different partitions in order to estimate local errors. Thus, at a
minimum, COLSYS would always double our sugjested mesh. This 1is apparent in
the results listed under the heading of "COLSYS Correction No. 1" in Table 2.
In some sense these results are encouraging insofar as they indicate that our
mesh selection strategy is doing about as well as it can, at least for
e < 1072, However, it seems that fewer points should be necessary, so we
tried giving COLSYS an initial mesh that consisted of every other point of our
reconnended mesh. This is clearly a risky strategy since collocation at the
Gauss-Legendre points 1s known to be unstable unless the mesh is sufficiently
fine in the bhoundary layers (cf. Ascher and Weiss (Ref. 2))., Our results
using this are reported under the heading of "COLSYS Correction No. 2" in
Table 2. Some improvement is noted for € » 10~%; however, COLSYS failed to
find a solution (within our prescribed limitations) when € = 1078,

In our second example we use the boundary conditions

x1€0) = 0 , =-x2(0) + €vp(0) = 0 , -x3(0) + €2y)(0) = 0 2

x2(1) + eys(1) = 0, x3(1) + €2y(1) = 0
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TABLE 1.

IN s'

NONLINEAR ELASTICALLY SUPPORTED BEAM,
AND CP TIMES USED TO SOLVE THE PROBLEM BY COLSYS WITH CONTINUATION
THE TOTAL CP IS THE ACCUMULATED TIME FOR THE e SEQUENCE.

NUMBER OF SUBINTERVALS (NSUB)

NSUB Cp

Total CpP

10!
10~2
107"
10~
108

80
78
78 1
156 4
100 1

8.0
17.0
36.5
81.0

100.0

B E, S A

v

TABLE 2.

TR oy

NONLINEAR ELASTICALLY SUPPORTED BEAM.
AND CP TIMES TO SOLVE THE PROBLEM BY
BY COLSYS. THE CP TIMES FOR SPCOL

MESH THAT IS TWICE AS COARSE.
FOR THE SPCOL AND COLSYS SOLUTLONS.

INCLUDE
REDUCED SOLUTION WHICH WAS 4.8 TIME UNITS.
THE MSSH THAT WAS RECOMMENDED BY SPCOL.
THE TOTAL CP IS THE SUM OF THE TIMES

NUMBER OF SUBINTERVALS ( NSUB)
SPCOL AND OBTAIN AN IMPROVEMENT
THE TIME TO CALCULATE THE

CORRECTION NO. 1 USES
CORRECTION NO., 2 USES A

SPCOL

COLSYS

Rec., No.
of NSUB

NSUB

Cp
--}-

"""" B

Cogzchion o, 1

COLSYS
Correction NWo. 2

Total

cp NSU

B cp Total CP

107!
102
107"
10-8

40 4
45 4.
54 4
55 4

100

30
108
110

1v.9
16.9
21.8
22.3

80
78
66

TABLE 3.

S N U |

16.9
12.9
14.1 .
Failed 3

NONLINEAR ELASTICALLY SUPPORTED BEAM.

DIFFEREHCES BETWEEN SPCOL

AND COLSYS SOLUTIONS, WHERE A( ) := |( JspcoL - ( DcoLsys]

——— e e —————

bx3(0)

ay2(0)

10~}
1072
10~
10~8

3.3x10"!

2.8x10~2

2.7x10~"
0

5.1x1072
6.6x1073
6.8x10™°3
1.3x10~7

T A

———

IS

Ax3(1l)

6.8x10~}

6.1x10"2

6.1x10~"
0

3.6x10"!}

3.9x1072

3.9x10™"
0

-
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Figure 1. Geometry, loading,

force, and
for nonlinear beam.
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Figure 2. Numerical solution of elastically supported beam with
boundary conditions given by Equations (29).
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boundary conditions given by Equations (32). Note that
') and Y, are multiplied by €.
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